Literature
Permanent URI for this collectionhttp://localhost:4000/handle/123456789/1427
Browse
Browsing Literature by Issue Date
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Associations of hand-washing frequency with incidence of acute respiratory tract infection and influenza-like illness in adults: a population-based study in Sweden(BMC Infectious Diseases, 2014) Merk, Hanna; Kühlmann-Berenzon, Sharon; Linde, Annika; Nyrén, OlofBackground: Frequent hand-washing is standard advice for avoidance of respiratory tract infections, but the evidence for a preventive effect in a general community setting is sparse. We therefore set out to quantify, in a population-based adult general population cohort, the possible protection against acute respiratory tract infections (ARIs) conferred by a person’s self-perceived hand-washing frequency. Methods: During the pandemic influenza season from September 2009 through May 2010, a cohort of 4365 adult residents of Stockholm County, Sweden, reported respiratory illnesses in real-time. A questionnaire about typical contact and hand-washing behaviour was administered at the end of the period (response rate 70%). Results: There was no significant decrease in ARI rates among adults with increased daily hand-washing frequency: Compared to 2–4 times/day, 5–9 times was associated with an adjusted ARI rate ratio (RR) of 1.08 (95% confidence interval [CI] 0.87-1.33), 10–19 times with RR = 1.22 (CI 0.97-1.53), and ≥20 times with RR = 1.03 (CI 0.81-1.32). A similar lack of effect was seen for influenza-like illness, and in all investigated subgroups. We found no clear effect modification by contact behaviour. Health care workers exhibited rate ratio point estimates below unity, but no dose-risk trend. Conclusions: Our results suggest that increases in what adult laymen perceive as being adequate hand-washing may not significantly reduce the risk of ARIs. This might have implications for the design of public health campaigns in the face of threatening outbreaks of respiratory infections. However, the generalizability of our results to non-pandemic circumstances should be further explored.Item Coronavirus Disease - 2019 (COVID-19)(Ministry of Health Uganda, 2020) Ministry of Health UgandaItem Guidance on community social distancing during COVID-19 Outbreak(African Union Commission, 2020) African UnionItem Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period(BMC Infectious Diseases of Poverty, 2020) Adhikari, Sasmita Poudel (et al...)Background: The coronavirus disease (COVID-19) has been identified as the cause of an outbreak of respiratory illness in Wuhan, Hubei Province, China beginning in December 2019. As of 31 January 2020, this epidemic had spread to 19 countries with 11 791 confirmed cases, including 213 deaths. The World Health Organization has declared it a Public Health Emergency of International Concern. Methods: A scoping review was conducted following the methodological framework suggested by Arksey and O’Malley. In this scoping review, 65 research articles published before 31 January 2020 were analyzed and discussed to better understand the epidemiology, causes, clinical diagnosis, prevention and control of this virus. The research domains, dates of publication, journal language, authors’ affiliations, and methodological characteristics were included in the analysis. All the findings and statements in this review regarding the outbreak are based on published information as listed in the references. Results: Most of the publications were written using the English language (89.2%). The largest proportion of published articles were related to causes (38.5%) and a majority (67.7%) were published by Chinese scholars. Research articles initially focused on causes, but over time there was an increase of the articles related to prevention and control. Studies thus far have shown that the virus’ origination is in connection to a seafood market in Wuhan, but specific animal associations have not been confirmed. Reported symptoms include fever, cough, fatigue, pneumonia, headache, diarrhea, hemoptysis, and dyspnea. Preventive measures such as masks, hand hygiene practices, avoidance of public contact, case detection, contact tracing, and quarantines have been discussed as ways to reduce transmission. To date, no specific antiviral treatment has proven effective; hence, infected people primarily rely on symptomatic treatment and supportive care. Conclusions: There has been a rapid surge in research in response to the outbreak of COVID-19. During this early period, published research primarily explored the epidemiology, causes, clinical manifestation and diagnosis, as well as prevention and control of the novel coronavirus. Although these studies are relevant to control the current public emergency, more high-quality research is needed to provide valid and reliable ways to manage this kind of public health emergency in both the short- and long-term.Item United Nations Emergency appeal for response to Covid-19 and its impacts(United Nations, 2020) United NationsItem BMJ best practice(BMJ, 2020-03-02)Item Clinical management of Covid-19(World Health Organisation, 2020-05-27)